Accelerated Cell Production Technology (AcCePT)

Weijia Zhou, Ph.D.
Director
608-262-5526

wzhou@engr.wisc.edu

Wisconsin Center for Space Automation and Robotics
College of Engineering, University of Wisconsin-Madison
http://wcsar.engr.wisc.edu

WCSAR's MISSION

WCSAR is a NASA Research Partnership Center (RPC) with its mission of assisting industry in the development of novel technologies and products derived from space-based plant biotech research, and thereby, to contribute to an improved quality of life on Earth.

ON-GOING R&D ACTIVITIES

Robotics/Automation Research

Microarraying (a.k.a. genechip) Robot:

To develop advanced spotting and environment technologies for high density microarray production

> Accelerated Cell Production Technology (a.k.a. Bioreactor):

To develop high throughput bioreactors for the commercial production of high value proteins and metabolites

> Autonomous Crop Harvesting Robot:

To develop self-navigated and autonomous crop harvester for NASA's Biomass Production System

Controlled Environment Technologies

To develop state-of-the-art technologies and systems for better control of air quality, food quality, photodynamic therapy, and national security

ON-GOING R&D ACTIVITIES (CONT.)

Plant Biotech Research

Biosynthesis of Novel Phytochemicals/Metabolites

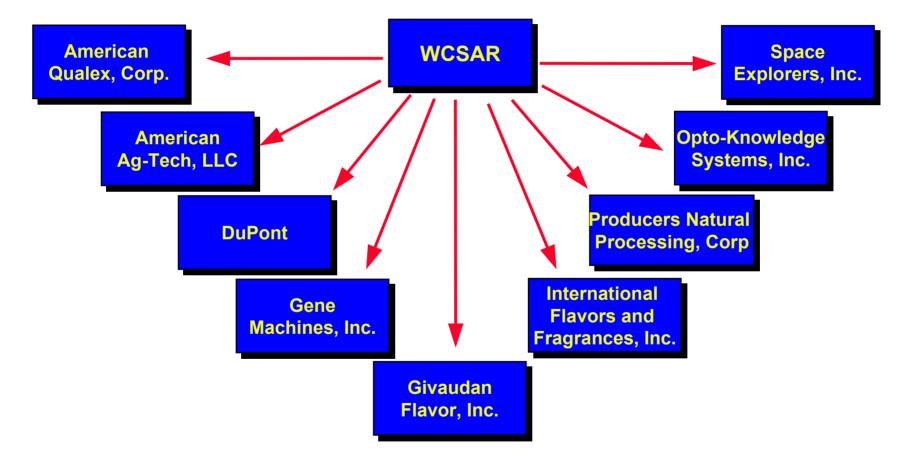
Using microgravity environment to enhance the biosynthesis of commercially interest secondary metabolites and phytochemicals using WCSAR-developed technologies and NASA-provided opportunities.

Advanced Crop Transformation Systems

To develop effective transformation systems for genetic engineering of agriculturally important crops such as soybean, corn, rice, wheat, barley,...

Nutraceuticals and Functional Foods

To identify/isolate pharmaceutically important compounds from plants and to study the their stability after incorporated into foods and drugs.


Recombinant Protein Development:

To produce commercially valuable proteins in plants

INDUSTRY COLLABORATION

INTRODUCTION OF AcCePTTM

Major Issues with Existing Technologies

- High Shear-stress
- Cell settling
- Cell aggregation and wall growth
- Low yield

INTRODUCTION OF AcCePT™

AcCePT design focuses on

Multi-dimensional agitation

Analysis using the Computational Fluid Dynamics (CFD) has provided optimal solutions for the agitation, which minimizes the shear stress, cell aggression, and wall growth.

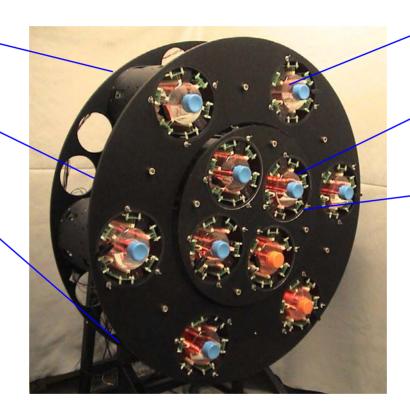
Stimulation of cell kinetic energy

Using near-infrared LEDs to energize the basic energy processes in energy compartments of cells and hence, to enhance cell metabolite energy.

Environment control

Provide environment control (CO₂, temperature,...) to create an optimal environment for cell cultivation.

Significantly improved productivity



INTRODUCTION OF AcCePTTM

Nutrient delivery (in the back)

Waste collection (in the back)

Motion control (multi-DOFs)

Suspension culture vessel (2.5 L volume)

LED photo treatment

Temperature control

INTRODUCTION OF AcCePTTM

<u>Applications Using AcCePT™</u>

(A Joint Efforts with PNP and American Qualex)

- DNA Vaccine Production
- Monoclonal Antibody Production
- Protein and Peptide Production
- Secondary Metabolite Production

INITIAL TRIAL RESULTS

Available upon request

